Содержание математического развития ребенка на современном этапе
Наталья Камзолова
Доклад «Современные требования к математическому развитию детей дошкольного возраста»
В современных условиях значительно повышаются требования к профессиональной подготовке воспитателя, к осознанию им сути математического развития дошкольников, пониманию качественных изменений в личности ребенка, происходящих под влиянием обучения и воспитания. Обучение только тогда будет эффективно, когда учитываются не только возрастные, но и индивидуальные особенности детей.
ФГОС ДОО говорит о том, что образовательная программа дошкольного образования должна обеспечивать познавательное развитие ребенка, которое в частности предполагает формирование первичных представлений о свойствах и отношениях объектов окружающего мира (форме, цвете, размере, материале, звучании, ритме, темпе, количестве, числе, части и целом, пространстве и времени, движении и покое, причинах и следствиях и др.).
Современное состояние математического развития дошкольников предусматривается в разных программах. Одна из них — программа «От рождения до школы». В содержании образовательной области «Познавательное развитие«, направленной на достижение целей развития у детей познавательных интересов, интеллектуального развития есть раздел «Формирование элементарных математических представлений»,который включает в себя:
• Количество и счет
• Величина
• Форма
• Ориентировка в пространстве
• Ориентировка во времени.
Понятие «развитие математических способностей» является довольно сложным, комплексным и многоаспектным. Оно состоит из взаимосвязанных и взаимообусловленных представлений о пространстве, форме, величине, времени, количестве, их свойствах и отношениях, которые необходимы для формирования у ребенка «житейских» и «научных» понятий.
Под математическим развитием дошкольников понимаются качественные изменения в познавательной деятельности ребенка, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций. Математическое развитие — значимый компонент в формировании «картины мира» ребенка.
Современные требования к математическому развитию детей — это развитие познавательных интересов; интеллектуального развития; развитие исследовательской деятельности ребенка; развитие умения анализировать; развитие умения устанавливать ассоциативные связи; развитие логического мышления, а именно умения устанавливать простейшие закономерности; формирование предпосылок учебной деятельности.
Проблема обучения математике в современной жизни приобретает все большее значение. Это объясняется, прежде всего, бурным развитием математической науки и проникновением ее в различные области знаний.
Повышение уровня творческой активности, проблемы автоматизации производства, моделирования на электронно-вычислительных машинах и многое другое предполагает наличие у специалистов большинства современных профессий достаточно развитого умения четко и последовательно анализировать изучаемые процессы. Поэтому обучение в детском саду направлено, прежде всего, на воспитание у детей привычки полноценной логической аргументации окружающего. Опыт обучения свидетельствует о том, что развитию логического мышления дошкольников в наибольшей мере способствует изучение начальной математики. Для математического стиля мышления характерны четкость, краткость, расчлененность, точность и логичность мысли, умение пользоваться символикой. В связи с этим систематически перестраивается содержание обучения математике в школе и детском саду.
Важно правильно использовать приемы по ФЭМП
-Демонстрация (обычно используется при сообщении новых знаний).
-Инструкция (используется при подготовке к самостоятельной работе).
-Пояснение, указание, разъяснение (используются для предотвращения, выявления и устранения ошибок).
-Вопросы к детям.
-Словесные отчеты детей.
-Предметно-практические и умственные действия.
-Контроль и оценка.
Требованияк вопросам воспитателя:
точность, конкретность, лаконизм;
логическая последовательность;
разнообразие формулировок;
небольшое, но достаточное количество;
избегать подсказывающих вопросов;
умело пользоваться дополнительными вопросами;
давать детям время на обдумывание.
Требования к ответам детей:
краткие или полные в зависимости от характера вопроса;
самостоятельные и осознанные;
точные, ясные;
достаточно громкие;
грамматически правильные.
Что делать, если ребенок отвечает неправильно?
(В младших группах необходимо исправить, попросить повторить правильный ответ и похвалить. В старших — можно сделать замечание, вызвать другого и похвалить правильно ответившего)
С ранних лет важно не только сообщать детям готовые знания, но и развивать умственные способности детей, научить их самостоятельно, осознанно получать знания и использовать их в жизни. Знания в области математики должны усложняться постепенно с учетом возраста и уровня развития детей.
Важно организовать накопление опыта ребенка, научить его пользоваться эталонами (формы, величины и др., рациональными способами действия (счета, измерения, вычислений и др.).
Учитывая незначительный опыт детей,обучение идет преимущественно индуктивным путем: сначала накапливаются с помощью взрослого конкретные знания, затем они обобщаются в правила и закономерности.Необходимо использовать и дедуктивный метод: сначала усвоение правила, затем его применение, конкретизация и анализ.
Для осуществления грамотного обучения дошкольников, их математического развития воспитатель сам должен знать предмет науки математики, психологические особенности развития математических представлений детей и методику работы.
Ведущим видом деятельности дошкольников является игра. Игре отводится большее время пребывания ребенка в дошкольном учреждении.
Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр. В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.
Взрослый создаёт условия и обстановку, благоприятные для вовлечения ребёнка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т. д. При этом инициатива в развёртывании игры, действия принадлежит ребёнку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс её развития, способствует получению результата.
Ребёнка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например,игры из серии: «Логические кубики», «Уголки», «Составь куб» и другие;из серии: «Кубики и цвет», «Сложи узор», «Куб-хамелеон» и другие.
Нельзя обойтись и без дидактических пособий. Они помогают ребёнку вычленить анализируемый объект, увидеть его во всём многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счётные палочки (палочки Кюизенера, модели и другие.
Играя и занимаясь с детьми, воспитатель способствует развитиюу них умений и способностей:
— оперировать свойствами, отношениями объектов, числами;
— выявлять простейшие изменения и зависимости объектов по форме, величине;
— сравнивать, обобщать группы предметов, соотносить, вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;
— проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;
— рассказывать о выполняемом или выполненном действии, разговаривать со взрослыми, сверстниками по поводу содержания игрового (практического) действия.
Ребенок с развитым логическим мышлением всегда имеет больше шансов быть успешным в математике, даже если он не был заранее научен элементам школьной программы (счету, вычислениям и т. п.). Не следует думать, что развитое логическое мышление — это природный дар, с наличием или отсутствием которого следует смириться. Существует большое количество исследований, подтверждающих, что развитием логического мышления можно и нужно заниматься (даже в тех случаях, когда природные задатки ребенка в этой области весьма скромны).
Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Необычная игровая ситуация с элементами проблемности, характерными для каждой занимательной задачи, всегда вызывает интерес у детей. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий «подвох» и для ее решения необходимо понять, в чем тут хитрость.
Таким образом, в дошкольном возрасте можно оказать значимое влияние на развитие математических способностей ребёнка. Даже если ребенок не станет непременным победителем математических олимпиад, проблем с математикой у него в начальной школе не будет, а если их не будет в начальной школе, то есть все основания рассчитывать на их отсутствие и в дальнейшем.
Источник
Под математическим развитием дошкольников, как правило, понимают качественные изменения в формах познавательной активности ребенка, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций. Анализ научных исследований (А.М. Леушина, Н.И. Непомнящая, А.А. Столяр и др.), педагогического опыта убеждает в том, что рационально организованное обучение дошкольников математике обеспечивает общее умственное развитие детей. Математическое развитие детей дошкольного возраста осуществляется как в результате приобретения ребенком знаний в повседневной жизни (прежде всего, в результате общения со взрослым), так и путем целенаправленного обучения на занятиях по формированию элементарных математических знаний. Именно элементарные математические знания и умения детей следует рассматривать как главное средство математического развития. Психологические экспериментальные исследования и педагогический опыт свидетельствуют о том, что благодаря систематическому обучению дошкольников математике у них формируются сенсорные, перцептивные, мыслительные, вербальные, мнемические и другие компоненты общих и специальных способностей. Задатки индивида превращаются в конкретные способности посредством учения (В. В. Давыдов, Л. В. Занков и др.). Содержание математического развития отражено в программе обучения детей математике, и условно его можно разделить на три таких направления:- представления и понятия; — зависимости и отношения; — математические действия. В дошкольном возрасте основные математические понятия вводятся описательно. Так, при ознакомлении с числом дети упражняются в счете конкретных предметов, реальных и нарисованных (считают девочек и мальчиков, зайчиков и лисичек, круги и квадраты), попутно знакомятся с простейшими геометрическими фигурами, без всяких определений и даже описаний этих понятий. Точно так же дети усваивают понятия: «больше», «меньше»; «один», «два», «три»; «первый», «второй», «последний» и т. д. Каждое понятие вводится наглядно, путем созерцания конкретных предметов или практического оперирования ими. Первая младшая группа: Количество.Привлекать детей к формированию групп однородных предметов. Учить различать количество предметов: «много» и «один», «много» и «мало». Величина.Привлекать внимание детей к предметам контрастных размеров (большой домик маленький домик, большая матрешка — маленькая матрешка, большие мячи — маленькие мячи и т. п.).Форма.Учить различать предметы по форме (кубик, шар и др.). Вторая младшая группа: Количество.Учить детей составлять группу из однородных предметов и выделять из нее один предмет; различать понятия «много», «один», «по одному», «ни одного»; находить один и несколько одинаковых предметов в окружающей обстановке; понимать вопрос «Сколько?»; при ответе пользоваться словами «много», «один». Учить сравнивать две равные (неравные) группы предметов на основе взаимного сопоставления элементов (предметов). Познакомить с приемами последовательного наложения и приложения предметов одной группы к предметам другой; понимать вопросы: «Поровну ли?», «Чего больше (меньше)?»; отвечать на вопросы, пользуясь предложениями типа: «Я на каждый кружок положил грибок. Кружков больше, а грибов меньше» или «Кружков столько же, сколько грибов». Величина.Учить детей сравнивать предметы контрастных (одинаковых) размеров; при сравнении величины предметов соизмерять один предмет с другим по заданному признаку, пользуясь приемами наложения и приложения, обозначать результат сравнения словами: длинный — короткий, одинаковые (равные по длине), широкий — узкий, одинаковые (равные по ширине), высокий — низкий, одинаковые (равные —по высоте), большой — маленький, одинаковые (равные по величине). Форма.Учить детей различать геометрические фигуры: круг, квадрат, треугольник; обследовать форму фигур, используя осязание и зрение. Ориентировка в пространстве.Учить ориентироваться в расположении частей своего тела (голова, ноги, правая/левая рука и др.) и в соответствии с этим различать пространственные направления от себя: впереди — позади (сзади), вверху — внизу, справа (слева) — направо (налево). Учить различать правую и левую руки. Ориентировка во времени.Учить ориентироваться в контрастных частях суток: день — ночь, утро — вечер. Средняя группа: Количество и счет.Дать детям представление о том, что множество (группа) может состоять из разных по качеству, предметов (разного цвета, формы, размера); учить сравнивать эти предметы, определяя их равенство или неравенство на основе составления пар (не прибегая к счету). Вводить в речь детей выражения: «Здесь много кружков, одни — красного цвета, а другие — синего; красных кружков больше, чем синих, а синих меньше, чем красных». Учить считать до 5, пользуясь правильными приемами счета: называть числительные по порядку; соотносить каждое числительное только с одним предметом пересчитываемой группы; относить последнее числительное ко всем пересчитанным предметам, например: «Один, два, три —всего три кружка». Подготовительная группа. Познакомить с цифрами от 0 до 9. Закреплять понимание отношений между числами натурального ряда (7 больше 6 на 1, а 6 меньше 7 на 1), умение увеличивать и уменьшать каждое число на 1 (в пределах 10). Учить называть числа в прямом и обратном порядке; последующее и предыдущее число к названному или обозначенному цифрой, определять пропущенное число. Познакомить с составом чисел второго пятка из единиц. Учить раскладывать число на два меньших (в пределах 10, на наглядной основе) и составлять из двух меньших большее. Познакомить с монетами достоинством 1,5, 10 копеек, 1, 2, 5, 10 рублей. Учить на наглядной основе составлять и решать простые задачи на сложение (к большему прибавляется меньшее) и на вычитание (вычитаемое меньше остатка). При решении задач учить пользоваться знаками действий: плюс (+), минус (-) и знаком отношения равно (=).
Дата добавления: 2015-06-05; просмотров: 7129; Опубликованный материал нарушает авторские права? | Защита персональных данных
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете??? 8771 — | 7581 — или читать все…
Читайте также:
Источник
Содержание математического развития детей дошкольного возраста.
Целостное развитие ребенка-дошкольника — многогранный процесс. Особую значимость в нем приобретают личностный, умственный, речевой, эмоциональный и другие аспекты развития. В умственном развитии немаловажную роль играет математическое развитие, которое в то же время не может осуществляться вне личностного, речевого и эмоционального.
Понятие «математическое развитие дошкольников» является довольно сложным, комплексным и многоаспектным. Оно состоит из взаимосвязанных и взаимообусловленных представлений о пространстве, форме, величине, времени, количестве, их свойствах и отношениях, которые необходимы для формирования у ребенка «житейских» и «научных» понятий. В процессе усвоения элементарных математических представлений дошкольник вступает в специфические социально-психологические отношения со временем и пространством (как физическим, так и социальным); у него формируются представления об относительности, транзитивности, дискретности и непрерывности величины и т. п. Эти представления могут рассматриваться в качестве особого «ключа» не только к овладению свойственными возрасту видами деятельности, к проникновению в смысл окружающей действительности, но и к формированию целостной «картины мира».
Основа трактовки понятия «математическое развитие» дошкольников была заложена и в работах Венгера Л.А. и на сегодня является наиболее распространенной в теории и практике обучения математике дошкольников. «Целью обучения на занятиях в детском саду является усвоение ребенком определенного заданного программой круга знаний и умений. Развитие умственных способностей при этом достигается косвенным путем: в процессе усвоения знаний. Именно в этом и заключается смысл широко распространенного понятия «развивающее обучение». Развивающий эффект обучения зависит от того, какие знания сообщаются детям и какие методы обучения применяются». Здесь хорошо заметна предполагаемая иерархия категорий: знания – первичны, метод обучения – вторичен, т.е. подразумевается, что метод обучения «подбирается» в зависимости от характера знаний, сообщаемых ребенку (при этом употребление слова «сообщаемых» очевидно сводит «на нет» саму вторую половину высказывания, поскольку раз «сообщаемых», значит метод «объяснительно-иллюстративный», и, наконец, полагается, что само умственное развитие – это самопроизвольное следствие этого обучения.
Такое понимание математического развития устойчиво сохраняется в работах специалистов дошкольного образования. В исследовании Абашиной В.В. дается определение понятию «математическое развитие»: «математическое развитие дошкольника — это процесс качественного изменения в интеллектуальной сфере личности, который происходит в результате формирования у ребенка математических представлений и понятий».
Из исследования Е.И.Щербаковой под математическим развитием дошкольников нужно понимать сдвиги и изменения в познавательной деятельности личности, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций. Иными словами, математическое развитие дошкольников — это качественные изменения в формах их познавательной активности, которые происходят в результате овладения детьми элементарными математическими представлениями и связанными с ними логическими операциями.
Выделившись из дошкольной педагогики, методика формирования элементарных математических представлений стала самостоятельной научной и учебной областью. Предметом её исследования является изучение основных закономерностей процесса формирования элементарных математических представлений у дошкольников в условиях общественного воспитания. Круг задач математического развития, решаемых методикой, достаточно обширен:
— научное обоснование программных требований к уровню развития количественных, пространственных, временных и других математических представлений детей в каждой возрастной группе;
— определение содержания материала для подготовки ребёнка в детском саду к усвоению математики в школе;
— совершенствование материала по формированию математических представлений в программе детского сада;
— разработка и внедрение в практику эффективных дидактических средств, методов и разнообразных форм и организация процесса развития элементарных математических представлений;
— реализация преемственности в формировании основных математических представлений в детском саду и соответствующих понятий в школе;
— разработка содержания подготовки высококвалифицированных кадров, способных осуществлять педагогическую и методическую работу по формированию и развитию математических представлений у детей во всех звеньях системы дошкольного воспитания;
— разработка на научной основе методических рекомендаций родителям по развитию математических представлений у детей в условиях семьи.
Среди задач по формированию элементарных математических знаний и последующего математического развития детей выделяются главные, а именно:
-приобретение знаний о множестве, числе, величине, форме, пространстве и времени как основах математического развития;
-формирование широкой начальной ориентации в количественных, пространственных и временных отношениях окружающей действительности;
-формирование навыков и умений в счете, вычислениях, измерении, моделировании, общеучебных умений;
-овладение математической терминологией;
-развитие познавательных интересов и способностей, логического мышления, общее интеллектуальное развитие ребенка.
Эти задачи чаще всего решаются воспитателем одновременно на каждом занятии по математике, а также в процессе организации разных видов самостоятельной детской деятельности. Многочисленные психолого-педагогические исследования и передовой педагогический опыт работы в дошкольных учреждениях показывают, что только правильно организованная детская деятельность и систематическое обучение обеспечивают своевременное математическое развитие дошкольника.
Теоретическую базу методики формирования элементарных математических представлений у дошкольников составляют не только общие, принципиальные, исходные положения философии, педагогики, психологии, математики и других наук. Как система педагогических знаний она имеет и свою собственную теорию, и свои источники. К последним относятся:
— научные исследования и публикации, в которых отражены основные результаты научных поисков (статьи, монографии, сборники научных трудов и т.д.);
— программно-инструктивные документы («Программа воспитания и обучения в детском саду», методические указания и т.д.);
— методическая литература (статьи в специализированных журналах, например, в «Дошкольном воспитании», пособия для воспитателей детского сада и родителей, сборники игр и упражнения, методические рекомендации и т.д.);
— передовой коллективный и индивидуальный педагогический опыт по формированию элементарных математических представлений у детей в детском саду и семье, опыт и идеи педагогов-новаторов.
Методика формирования элементарных математических представлений у детей постоянно развивается, совершенствуется и обогащается результатами научных исследований и передового педагогического опыта.
В настоящее время благодаря усилиям ученых и практиков создана, успешно функционирует и совершенствуется научно-обоснованная методическая система по развитию математических представлений у детей. Её основные элементы — цель, содержание, методы, средства и формы организации работы — теснейшим образом связаны между собой и взаимообуславливают друг друга.
Ведущим и определяющим среди них является цель, так как она ведёт к выполнению социального заказа общества детским садом, подготавливая детей к изучению основ наук (в том числе и математики) в школе.
Дошкольники активно осваивают счёт, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.
Необходимость современных требований вызвана высоким уровнем современной школы к математической подготовке детей в детском саду в связи с переходом на обучение в школе с шести лет.
Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи. Воспитатель должен знать, не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей.
Таким образом, математическое развитие рассматривается как следствие обучения математическим знаниям. В какой-то мере это, безусловно, наблюдается в некоторых случаях, но происходит далеко не всегда. Если бы данный подход к математическому развитию ребенка был верным, то достаточно было бы отобрать круг знаний, сообщаемых ребенку, и подобрать «под них» соответствующий метод обучения, чтобы сделать этот процесс реально продуктивным, т.е. получать в результате «поголовное» высокое математическое развитие у всех детей.
Источник