Математическое развитие ребенка в системе дошкольного образования
Ольга Стульникова
Концепция математического развития в дошкольном образовании
Концепция математического развития в дошкольном образовании
Стульникова Ольга Геннадиевна, старший воспитатель,
СП ГБОУ СОШ № 10 «ОЦ ЛИК» детский сад № 16,
Самарская область, г. Отрадный
Математическое развитие детей в дошкольном образовательном учреждении проектируется на основе концепции дошкольного воспитания и обучения, программы учреждения, целей и задач развития детей, данных диагностики, прогнозируемых результатов. Концепцией определяется соотношение предматематического и предлогического компонентов в содержании образования.От этого соотношения зависят прогнозируемые результаты: развитие интеллектуальных способностей детей, их логического, творческого или критического мышления; формирование представлений о числах, вычислительных или комбинаторных навыках, способах преобразования объектов и т. д.
Приобретение знаний и умений формируется под влиянием развивающего
обучения и благодаря особой организации учебного процесса развиваются все познавательные психические процессы, связанные с ощущением, восприятием, памятью, вниманием, речью, мышлением, а также волевые и эмоциональные процессы в целом. Развивающий эффект обучения должен быть сориентирован на «зону ближайшего развития». Детям предлагается, наряду с заданиями, которые они могут выполнять сейчас самостоятельно, и такие задания, которые требуют от них догадки, смекалки, наблюдательности. Приобретенные таким образом знания, а главное – систематическое совершенствование их качества, плюс развитие мышления, обеспечивают общее развитие ребенка.
ПРОЦЕСС МАТЕМАТИЧЕСКОГО РАЗВИТИЯ
Процесс математического развития ребенка связан, прежде всего, с развитием
его познавательной сферы (разнообразных способов познания, познавательной
деятельностью и т. д., а также с развитием математического стиля мышления.
Благодаря математическому развитию у дошкольников развиваются личностные качества: активность, любознательность, настойчивость в преодолении трудностей, самостоятельность и ответственность. В процессе математического развития происходит общее интеллектуальное и речевое развитие ребенка (доказательной и аргументированной речи, обогащение словаря).
Целью математического развития дошкольника является знакомство с азами
математической культуры и привитие интереса к дальнейшему познанию
окружающего мира с использованием элементов этой культуры (Распоряжение Правительства РФ «Об утверждении Концепции развития математического образования в Российской Федерации», декабрь 2013г.).
ОСНОВНЫЕ ЗАДАЧИ МАТЕМАТИЧЕСКОГО РАЗВИТИЯ:
• Формирование навыков и умений в счете, вычислениях, измерении,
моделировании.
• Развитие логико-математических представлений и представлений о
математических свойствах и отношениях предметов, конкретных величинах, числах, геометрических фигурах, зависимостях и закономерностях.
• Развитие сенсорных (предметно-действенных) способов познания
математических свойств и отношений, а именно обследования, сопоставления,
группировки, упорядочения.
• Развитие у детей логических способов познания математических свойств и
отношений, а именно анализа, сравнения, обобщения, классификации, сериации.
ОБЩИЕ ДИДАКТИЧЕСКИЕ ПРИНЦИПЫ ОБУЧЕНИЯ ДОШКОЛЬНИКОВ ЭЛЕМЕНТАМ МАТЕМАТИКИ
Принцип воспитывающего обучения.
Воспитание и обучение — воспитывающее обучение, характеризующееся
конкретной умственной и практической работой детей, которая развивает у них
организованность, дисциплинированность, аккуратность, ответственность.
Уровень развития дошкольника зависит от специально организованного
«умственного воспитания», которое представляет собой педагогический процесс, направленный на формирование у дошкольников элементарных знаний и умений, способов умственной деятельности, а также на развитие способностей детей и их потребности в умственной деятельности. Основной составляющей частью умственного воспитания дошкольника являются способы умственных действий. Каждое умственное действие — соответствующая мыслительная операция. Эти операции — различные, взаимосвязанные, переходящие друг в друга стороны мышления.
Основные мыслительные операции: анализ, синтез, сравнение, классификация, обобщение, абстрагирование. Все указанные операции не могут проявляться изолированно вне связи друг с другом, т. е. нельзя сформировать отдельно какую-либо мыслительную операцию без связи и опоры на другие операции. «Показателем усвоения приема является его сознательный перенос на решение новых задач». У дошкольника способы умственных действий должны быть заложены именно в этом возрасте, более того без формирования мыслительных операций невозможно умственное воспитание ребенка.
Принцип гуманизации педагогического процесса.
Это принцип личностно — ориентированной модели воспитания и обучения.
Главным в обучении должно стать развитие возможности приобретать знания и
умения и использовать их в жизни, индивидуализации обучения, создание условий для становления ребенка как личности.
Принцип индивидуального подхода.
Принцип индивидуального подхода предусматривает организацию обучения на основе глубокого знания индивидуальных способностей ребенка, создания условия для активной познавательной деятельности всех детей группы и каждого ребенка в отдельности.
Принцип научности обучения и его доступности.
Данный принцип означает формирование у детей дошкольного возраста
элементарных, но по сути научных, достоверных математических знаний.
Представления о количестве, размере и форме, пространстве и времени даются детям в таком объеме и на таком уровне конкретности и обобщенности, чтобы это было им доступно, и чтобы эти знания не искажали содержания с учетом возраста детей, особенностей их восприятия, памяти, внимания, мышления.
Реализации принципа доступности способствует и то, что материал, который
изучается,излагается в соответствии с правилами: от простого к сложному; от известного к неизвестному; от общего к конкретному.
Таким образом, знания детей постепенно расширяются, углубляются, лучше
ими усваиваются, но новые знания следует предлагать детям небольшими дозами, обеспечивая повторение и закрепление их разными упражнениями с использованием их применения в разных видах деятельности.
Принцип доступности предусматривает также подбор материала не слишком
трудного, но и не слишком легкого. Организуя обучение детей, педагог должен
исходить из доступного уровня трудности для детей определенного возраста.
Принцип осознанности и активности.
Осознанное усвоение учебного материала предусматривает активизацию
умственных (познавательных) процессов у ребенка.
Познавательную активность – это самостоятельность, осознанность,
осмысленность, инициативность, творчество в процессе умственной деятельности, умение ребенка видеть и самостоятельно ставить познавательные задачи, составлять план и выбирать способы решения задачи с использованием наиболее надежных и эффективных приемов, добиваться результата.
Принцип систематичности, последовательности.
Логический порядок изучения материала, при котором знания опираются на
ранее полученные. Этот принцип особенно важен именно при изучении математики, где каждое новое знание как бы вытекает из старого, известного. Педагог распределяет программный материал таким образом, чтобы обеспечивалось его последовательное усложнение, связь последующего материала с предыдущим. Именно такое изучение обеспечивает прочные и глубокие знания.
Принцип наглядности.
Этот принцип имеет важное значение в обучении детей дошкольного возраста, т. к. мышление ребенка имеет преимущественно наглядно-образный характер. В методике обучения детей математике принцип наглядности тесно связывается с активностью ребенка. Осознанное овладение элементами математических знаний возможно лишь при наличии у детей некоторого чувственного познавательного опыта, через непосредственное восприятие окружающей действительности или познанием этой действительности через изобразительные и технические средства.
ПРЕДМЕТНО-ПРОСТРАНСТВЕННАЯ СРЕДА
Для успешной работы необходима специально организованная предметно-
пространственная развивающая среда: помещение с наличием как места для работы детей за столами, так и достаточно места для проведения игр, в том числе и подвижных. Наличие игротеки, материалов для изготовления игр и игрового материала. Наличие мячей, кубиков и другого физкультурного оборудования.
ПРИНЦИПЫ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
Для организации образовательного процесса выбрана трехблочная модель,
которая собирает в себе все известные основные модели, по которым работают
дошкольные учреждения: учебную, комплексно-тематическую, предметно-
пространственную — средовую. При этом используются сильные стороны каждой отдельной модели, и, по возможности, устраняются их недостатки.
I блок. Специально организованное обучение в форме занятий — содержание
организуется по «предметам».
II блок. Совместная взросло — детская (партнерская) деятельность — содержание
организуется комплексно – тематически.
III Блок. Свободная самостоятельная деятельность детей – в соответствии с
традиционными видами детской деятельности.
В рамках первого блока организуется обучение в форме специальных
занятий на основе программы. Процесс обучения дошкольников строится с учетом возрастных особенностей детей дошкольного возраста. Преимущественно применяются игровые приемы и средства, привлекательные для детей виды деятельности (реализуется принцип «учение с увлечением», обеспечивается комфортное для психофизиологического состояния ребенка комбинирование произвольных и непроизвольных, статических и динамических форм на занятиях.
В рамках второго блока организуется познавательно — исследовательская
деятельность детей на основе стандартов. Цель — помочь воспитанникам научиться самостоятельно получать знания, развить навыки исследовательской деятельности, сформировать целостную картину мира и понимание своего места в нем.В ходе исследований воспитанники: проводят эксперименты и практические работы; собирают информацию и обрабатывают данные; делают проекты и проводят презентации;
В рамках третьего блока самостоятельная деятельность детей осуществляется на занятиях в центрах активности и в произвольной игровой деятельности.
Деятельность направлена на развитие познавательных способностей и
поисковых действий детей. В центрах активности помещение разделено на
несколько зон, в каждой из которых находятся материалы для занятий, игр,
проведения экспериментов и исследований.
Неоспорима роль дошкольной подготовки к школе не только в формировании, развитии и пополнении математических знаний, умений и навыков дошкольника, но и в интеллектуальном развитии ребенка в целом. Математическое образование на ранних этапах развития — мощный инструмент становления личности, обладающей развитым логическим мышлением, навыками анализа и синтеза, классификации и систематизации. Эти навыки станут залогом успеха не только в школьной математике, но и в других предметах школьного цикла, и в дальнейшей профессиональной деятельности подрастающего гражданина. Подготовка основы математических знаний должна занять важное место в программах дошкольного воспитания и обучения.
ЛИТЕРАТУРА.
1. Н. Н. Поддьяков. Содержание и методы умственного воспитания дошкольников.
2. Н. Ю. Борякова, А. В. Соболева, В. В. Ткачёва. Практикум по развитию мыслительной деятельности у дошкольников.
3. Е. А. Юзбекова. Ступеньки творчества.
4. А. В. Белошистая. Обучение математике в ДОУ.
5. З. А. Михайлова. Математика от трёх до семи.
6. Т. И. Ерофеева. Дошкольник изучает математику.
7. А. А. Смоленцева. Сюжетно-дидактические игры с математическим содержанием.
8. Дагмар Алытхауз, Эрна Дум. Цвет, форма, количество.
9. А. И. Иванова. Естественно – научные наблюдения и эксперименты в детском саду.
10. А. И. Савенков. Методика проведения учебных исследований в детском саду.
Источник
Математическое развитие дошкольников.
Роль математики в современной науке постоянно возрастает. На сегодняшний день неоспоримым фактом является то, что математика нужна для интеллектуального развития личности.
Дошкольное образование — первое и самое ответственное звено в общей системе образования. В дошкольном возрасте закладывается фундамент представлений и понятий, который обеспечивает успешное умственное развитие ребенка. И родители, и педагоги знают, что математика — это мощный фактор интеллектуального развития ребенка, формирования его познавательных и творческих способностей. Известно и то, что от эффективности математического развития ребенка в дошкольном возрасте зависит успешность обучения математике в начальной школе.
Основа трактовки понятия «математическое развитие» дошкольников была заложена и в работах Венгера Л.А. и на сегодня является наиболее распространенной в теории и практике обучения математике дошкольников. «Целью обучения на занятиях в детском саду является усвоение ребенком определенного заданного программой круга знаний и умений. Развитие умственных способностей при этом достигается косвенным путем: в процессе усвоения знаний. Именно в этом и заключается смысл широко распространенного понятия «развивающее обучение». Развивающий эффект обучения зависит от того, какие знания сообщаются детям и какие методы обучения применяются».
Из исследования Е.И.Щербаковой под математическим развитием дошкольников нужно понимать сдвиги и изменения в познавательной деятельности личности, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций. Иными словами, математическое развитие дошкольников — это качественные изменения в формах их познавательной активности, которые происходят в результате овладения детьми элементарными математическими представлениями и связанными с ними логическими операциями.
Среди задач по формированию элементарных математических знаний и последующего математического развития детей следует выделить главные, а именно:
-приобретение знаний о множестве, числе, величине, форме, пространстве и времени как основах математического развития;
-формирование широкой начальной ориентации в количественных, пространственных и временных отношениях окружающей действительности;
-формирование навыков и умений в счете, вычислениях, измерении, моделировании, общеучебных умений;
-овладение математической терминологией;
-развитие познавательных интересов и способностей, логического мышления, общее интеллектуальное развитие ребенка.
Эти задачи чаще всего решаются воспитателем одновременно на каждом занятии по математике, а также в процессе организации разных видов самостоятельной детской деятельности.
На занятиях по математике в детском саду формируются простейшие виды практической и умственной деятельности детей. Под видами деятельности — в этом случае способами обследования, счета, измерения — понимают объективные последовательные действия, которые должен выполнять ребенок для усвоения знаний: поэлементное сравнение двух множеств, накладывание меры и др. Овладевая этими действиями, ребенок усваивает цель и способы деятельности, а также правила, обеспечивающие формирование знаний.
Центральной задачей математического развития детей в детском саду является обучение счету. Основными способами при этом являются накладывание и прикладывание, овладение которыми предвосхищает обучение счету с помощью слов-числительных.
Одновременно дошкольников учат сравнивать предметы по величине (размеру) и результаты сравнения обозначать соответствующими словами-понятиями («больше — меньше», «узкий — широкий» и др.), строить ряды предметов по их размеру в порядке возрастания или уменьшения (большой, маленький, еще меньше, самый маленький). Однако, для того чтобы ребенок усвоил эти понятая, необходимо сформировать у него конкретные представления, научить его сравнивать предметы между собой сначала непосредственно — накладыванием, а потом опосредованно — с помощью измерения.
На основе практических действий у детей формируются такие мыслительные операции, как анализ, синтез, сравнение, обобщение. Воспитатель должен ориентироваться в оценке результатов своей работы прежде всего на эти показатели, на то, как дети умеют сравнивать, анализировать, обобщать, делать выводы. Уровень овладения детьми умственными операциями зависит от использования специальных методических приемов, которые позволяют детям упражняться в сравнении, обобщении. Так, дети учатся сравнивать множества по количеству, осуществляя при этом структурный и количественный анализ множества. Сравнивая предметы по форме, дети выделяют размер отдельных элементов, сопоставляя их между собою.
Математическое развитие ребенка не сводится только к тому, чтобы научить считать, измерять и решать арифметические задачи. Оно подразумевает еще и развитие способность видеть, открывать в окружающем мире свойства, отношения, зависимости, уметь их передавать с помощью знаков, символов.
Формирование начальных математических понятий и действий проходит те же этапы, что и всякое умственное действие. На первом этапе ребенок осуществляет счетные операции лишь с опорой на внешние предметы. На втором этапе математические действия осуществляются в плане громкой речи. Этот этап делится на две стадии. На первой ребенок не может выполнить задание «2 + 2», но легко выполнит «к 2 яблокам прибавить 2 яблока». Таким образом, на первой стадии опора на зрительный образ ситуации является необходимым условием выполнения математического действия. Вторая стадия определяется как стадия абстрактной речи, когда ребенок выполняет действия на основе только называния числительных. На третьем этапе математические действия осуществляются в плане внутренней речи (П. Я. Гальперин, Л. С. Георгиев).
В осуществлении познавательной деятельности (а математическая деятельность — это специфическая познавательная деятельность) ведущая роль принадлежит речи. Выполняя практическое действие, ребенок должен суметь оречевить это действие. На способности описать свое действие формируется умение рассуждать, обосновывать то или иное решение. В математике при описании свойств предметов и их отношений требуются точные слова — термины. Используемые на занятиях по математике обороты отличаются строго заданным порядком сочетаний слов. Для успешного усвоения счетных операций прежде всего необходимо овладеть определенным лингвистическим уровнем. Чтобы воспринимать определения, ребенок должен овладеть необходимым запасом слов, понять их значение, точно определить характер логико-грамматических связей между словами и предложениями. Сформированность лексико-грамматического строя речи является чрезвычайно важной при решении арифметических задач. Анализируя текст задачи, ребенок должен установить зависимости между данными задачи, выделить их логические связи.
Таким образом, необходимым условием успешного овладения математикой является сформированность многих психических функций и процессов. И, несомненно, одной из важнейших предпосылок овладения счетными операциями служит речь.
В процессе работы по активизации речевой деятельности на занятиях по ФЭМП решаются следующие задачи:
1. Формирование прочных знаний по всем разделам элементарной математики (количество и счет, форма и величина, ориентировка в пространстве и на плоскости, ориентировка во времени) в соответствии с программой.
2. Обогащение и активизация словарного запаса детей, используя в работе разнообразный речевой материал, фольклор.
Для формирование словарного запаса целесообразно использовать наглядный и речевой материал: веселые стихи о цифрах; сказки, рассказы, в которых присутствуют цифры; загадки; ребусы; считалочки; поговорки; дразнилки и т.п. Все это обогащает словарный (в том числе математический) запас, тренирует внимание, память, закладывает основы творчества, развивает объяснительную и доказательную речь. Фольклор помогает создать эмоциональный настрой, активизировать умственную деятельность ребенка.
3. Обучение использованию в своей речи математических терминов в соответствии с программным материалом:
— названий геометрических фигур (круг, квадрат, треугольник, прямоугольник, четырехугольник, многоугольник, овал, ромб);
— элементов фигур (угол, сторона, вершина);
— вычислительных действий (прибавить, вычесть, получится, равно, количество, цифра, число и тд);
— сравнительных действий (больше, меньше, длиннее, короче, выше — ниже, уже — шире, толще — тоньше и др.);
— пространственных отношений (верх — низ, впереди — сзади, налево — направо, рядом — далеко и др.);
4. Активизирование умственной деятельности детей.
5. Развитие внимания, памяти, воображения, мышления.
Работа по активизации речевой деятельности на занятиях по формированию элементарных математических представлений проводится поэтапно.
I. Начинается с обследовательских действий: ощупывание цифры, сделанной из пластмассы, фанеры, наждачной бумаги и др. материалов. В процессе этого вида деятельности дети учатся рассказывать о своих ощущениях, догадках, у них развиваются двигательная и зрительная память, мышление, внимание, речь.
II. Обводка цифры, штриховка, раскрашивание. Дети учатся согласовывать действия обеих рук, развивают глазомер, точность движений, аккуратность, в ходе выполнения задания уточняются знания детей о цвете, о расположении цифры на листе, умение ориентироваться на плоскости и т.д.
III. Составление цифры из кубиков «Цифры» и составление ее из частей (конструктор «Цифры») направлены на развитие аналитико-синтетической деятельности, внимания, памяти, развитие моторики, умения ориентироваться в пространстве.
IV. Для развития воображения проводится задание «На что похожа цифра?» Дети учатся сравнивать предметы, выделять признаки сходства и различия, в процессе проведения данного задания у детей развиваются творческие способности, фантазия и речь.
V. Рисование цифры мокрым пальчиком на доске, на песке. В данном задании закрепляется образ цифры, не только зрительно, но и моторно, дети учатся соотносить речевое обозначение цифры с ее графическим изображением.
VI. Чтение стихов про цифры, сказок, в которых есть упоминание о цифрах, скороговорок и тд. Это помогает детям увидеть необходимость знания цифр, их использование в художественном творчестве.
VII. Создание из детских рисунков коллажа математического содержания, по которому дети придумывают сказки и рассказы. В процессе этого вида работы развивается связная речь детей, обогащается и активизируется их словарный запас, формируется умение выступать перед слушателями, развивается выразительность речи.
VIII. Придумывание рассказов о цифрах от первого лица, например: «Я единица. У меня острый нос. Я очень любопытная, везде его сую, поэтому он и стал у меня такой длинный. Ко мне не подходи, а то уколю». Такие рассказы записываются в «Книжку-малышку», которая есть у каждого ребенка в группе
По такому же принципу строится последовательность работы по знакомству с геометрическими фигурами.
В работе по активизации речевой деятельности детей на занятиях по ФЭМП целесообразно использовать блоки Дьенеша, палочки Кюизенера, дидактические пособия М. Монтессори, Ж. Пиаже, М. Фидлер и др. В процессе работы с пособиями дети учатся оречевлять свои действия, используя математические термины, сравнивать объекты по цвету, величине, количеству, форме. Создавая образы птиц, животных («Танграм»), дети вспоминают песни, стихи, рассказы, придумывают загадки.
Как правило, учебные задачи на занятиях решаются в сочетании с воспитательными. Так, воспитатель учит детей быть организованными, самостоятельными, внимательно слушать, выполнять работу качественно и в срок. Это дисциплинирует детей, способствует формированию у них целенаправленности, организованности, ответственности. Таким образом, обучение детей математике с раннего возраста обеспечивает их всестороннее развитие.
Источник